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SUMMARY

Part I of this work presents a detailed multi-methods comparison of the spatial errors associated with
the one-dimensional �nite di�erence, �nite element and �nite volume semi-discretizations of the scalar
advection–di�usion equation. In Part II we extend the analysis to two-dimensional domains and also
consider the e�ects of wave propagation direction and grid aspect ratio on the phase speed, and the
discrete and arti�cial di�usivities. The observed dependence of dispersive and di�usive behaviour on
propagation direction makes comparison of methods more di�cult relative to the one-dimensional results.
For this reason, integrated (over propagation direction and wave number) error and anisotropy metrics
are introduced to facilitate comparison among the various methods. With respect to these metrics,
the consistent mass Galerkin and consistent mass control-volume �nite element methods, and their
streamline upwind derivatives, exhibit comparable accuracy, and generally out-perform their lumped
mass counterparts and �nite-di�erence based schemes. While this work can only be considered a �rst
step in a comprehensive multi-methods analysis and comparison, it serves to identify some of the
relative strengths and weaknesses of multiple numerical methods in a common mathematical framework.
Published in 2004 by John Wiley & Sons, Ltd.
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1. INTRODUCTION

In the two-dimensional analysis, the e�ects of grid aspect ratio, �=�y=�x, and wave prop-
agation direction, �, on the noted numerical artifacts are examined as a function of dis-
crete wave number. In Section 2, several metrics are introduced that provide integrated (over
propagation direction and wave number) measures of anisotropy and error to allow a quan-
titative methods comparison. The metrics section is followed by a presentation of phase
speed, discrete di�usivity, and arti�cial di�usivity results for the �nite element, control-volume
�nite element, and �nite di�erence=volume semi-discretizations in two dimensions. Finally, the
results of both Parts I and II of this paper are summarized and conclusions drawn.
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2. METRICS

This paper presents the two-dimensional discrete phase speed, and discrete and arti�cial dif-
fusivities for the �nite di�erence, �nite volume and �nite element methods outlined in Part
I of this work [1]. Relative to the one-dimensional results, the two-dimensional results add
wave vector and velocity vector directions, � and # respectively (see Figure 2, Part I), to
the parameter space. While the analysis methods presented in this work can generally handle
the case when the advection velocity and wave vector directions are di�erent, # �= �, a full
presentation of these results have been omitted due to practical space limitations. Instead our
analyses assume #= � to elucidate the angular sensitivity of the discrete methods, i.e. depen-
dence on �, signi�cantly increases the complexity of the phase speed and di�usivity results.
We relax this restriction for one selected semi-discretization to get a �avour of its e�ect. We
recognize that group errors are also important for multi-dimensional domains, however, prac-
tical space limitations prohibit discussion of the e�ect here. The reader may wish to consult
Gresho and Sani [2, pp. 222–234] for a additional results on two-dimensional group speed.
In order to present the two-dimensional results, polar plots are used. Figure 1 shows a plot

of phase speed for a representative two-dimensional semi-discretization on a unit aspect ratio
grid. In Figure 1, the radial coordinate is phase speed, c̃=c, and the propagation direction is
associated with the azimuthal coordinate. Polar curves at �xed non-dimensional wave number
are plotted in the �gure with each curve representing the dimensionless phase speed for
that wave number. In this work, curves at 2�x=�=0, 0.2, 0.4, 0.6, 0.8 and 1.0 are plotted.
The �gure clearly demonstrates the anisotropic behaviour (i.e. � dependence) of the non-
dimensional phase speed, c̃=c. For this example, the anisotropy becomes more pronounced as
dimensionless wave number increases from 0 to 1. Note that the phase and di�usivity polar
plots in this paper are constructed for the �rst quadrant (i.e. 06�6�=2 where u and v are
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Figure 1. Non-dimensional phase speed (c̃=c; radial coordinate) as a
function of � (azimuthal coordinate).
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positive as implied by the stencils of the Appendix, Part I) with the remaining portions being
constructed by symmetry.
Although polar plots such as that shown in Figure 1 suggest the degree of anisotropy and

accuracy of an individual method, a quantitative measure is desired. For this reason, two
metrics are introduced. The �rst metric is the coe�cient of variation,

&(2�x=�)=
�(2�x=�)
G(2�x=�)

(1)

which provides a measure of the anisotropy of a method for a given dimensionless wave
number. In Equation (1), G is a generic variable representing c̃=c or �̃=�,

G(2�x=�)=
1
2�

∫ 2�

0
G(2�x=�; �) d� (2)

is its mean and,

�(2�x=�)=

√
1
2�

∫ 2�

0

(
G(2�x=�; �)−G(2�x=�)

)2
d� (3)

its standard deviation at some 2�x=�.
It is clear from Equations (1)–(3) that an isotropic scheme yields &(2�x=�)=0 because

G(2�x=�; �)=G(2�x=�) for all �. Similarly, large values of & correlate to a high degree of
anisotropy so that a direct comparison between methods can be made at a given wavelength,
and between wavelengths for a given method. For the scheme represented by Figure 1, &=0:0,
1:2× 10−2, 5:0× 10−2, 1:3× 10−1, 2:9× 10−1 and 7:0× 10−1 for 2�x=�=0, 0.2, 0.4, 0.6, 0.8
and 1.0, respectively. As indicated by &(0) and suggested by the �gure, the scheme is per-
fectly isotropic in the limit of in�nite wavelength (i.e. 2�x=�=0). As wavelength decreases,
the method becomes increasingly anisotropic. At the Nyquist limit, 2�x=�=1, the method
demonstrates the greatest anisotropy in this measure.
The average value of the coe�cient of variation,

&=
∫ 1

0
&(2�x=�) d(2�x=�) (4)

is also employed here and provides a single number, independent of 2�x=�, which may also
be used for comparison of discretization schemes. Again, a larger value of & indicates (on
average) greater anisotropy while &=0 is representative of a method that is isotropic for all
wavelengths.
While the & and & metrics provide a quantitative measure of a method’s anisotropy in

phase and discrete di�usivity, they do not provide a measure of the error associated with a
discretization. Indeed, it is possible for a discretization scheme to have signi�cant error in
phase or di�usivity, while still demonstrating isotropic behaviour. In the case of phase speed,
this (unlikely) result is characterized by a perfectly isotropic phase which di�ers from the
ideal such that c̃(2�x=�)= c̃(2�x=�; �) �= c. For this reason, we introduce a second metric,
the RMS error metric,

�(2�x=�)=

√
1
2�

∫ 2�

0
(G(2�x=�; �)− g(2�x=�; �))2 d� (5)
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This metric measures the azimuthal deviation of G from its true (i.e. physical) value g. For
dimensionless phase speed and discrete di�usivity, g=1. Hence, an ideal scheme will have
�(2�x=�)=0 for all wavelengths 062�x=�¡1. For the scheme represented by Figure 1,
�=0:0, 5:0× 10−2, 1:9× 10−1, 3:9× 10−1, 6:2× 10−1 and 8:3× 10−1 for 2�x=�=0, 0.2, 0.4,
0.6, 0.8 and 1.0, respectively.
The average value of � over 2�x=�,

�=
∫ 1

0
�(2�x=�) d(2�x=�) (6)

is also employed here as it provides a single error metric that facilitates methods comparison.
Larger values of � indicate, on average, larger errors for the method. The method of Figure
1 yields �=3:3× 10−2 in terms of phase speed.

3. RESULTS

3.1. Phase speed

This section begins with a presentation of the analytic expressions for the non-dimensional
phase speed for all the semi-discrete methods considered. A summary of the phase speed
results in terms of polar plots and the anisotropy and error metrics follows.
Phase speed formulae. Owing to the nature of the linear advection–di�usion equation, the

trial solution and the Cartesian grid, the two-dimensional dispersion formulae for some of
the methods can be written in terms of the one-dimensional formulae presented in Part I.
The representation of the two-dimensional phase formulae in terms of the one-dimensional
formulae is particularly useful in understanding the complex dispersive behaviour for the two-
dimensional discretizations. Thus, the two-dimensional phase speed for FEM, CVFEM, CD,
SOU, TOU, Fromm and QUICK can be written as

c̃
c
= cos2 �F1Dc̃ (k�x cos �) + sin

2 �F1Dc̃ (k�y sin �) (7)

In Equation (7) F1Dc̃ (’) is the method’s one-dimensional phase speed formula (cf. Table II,
Part I) where ’= k�x is replaced by k�x cos � or k�y sin �. Using consistent mass FEM as
an example,

F1Dc̃ (’)=
sin(’)
’

3
2 + cos(’)

(8)

and hence the phase speed formula is

c̃
c
= cos2 �

sin(k�x cos �)
k�x cos �

3
2 + cos(k�x cos �)

+ sin2 �
sin(�k�x sin �)
�k�x sin �

3
2 + cos(�k�x sin �)

(9)
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where ��x=�y has been used (cf. Equation (2.6-200) in Gresho and Sani [2]). As noted
earlier, our analyses assume (for clarity) that the wave number and velocity vectors are aligned
(i.e. �=#). This is not strictly necessary and we may perform a similar analysis for � �= #. A
�avour of the resulting phase speed behaviour is presented later for the consistent mass FEM.
Presenting these more complicated behaviours for the other semi-discretizations considered
here is beyond the scope of this work and so, again, unless otherwise noted, the remaining
discussions are for �=#.
As expected, the one-dimensional formula is recovered along the co-ordinate directions (i.e.

�=0; �=2; �, and 3�=2), in terms of the corresponding mesh increment (�x or �y) for the co-
ordinate direction. Furthermore, for plane waves propagating normal to the diagonal (�=�=4)
of a square grid (�=1), the two-dimensional formula reverts to the one-dimensional result,
but with an e�ective grid spacing of �xe� =�x

√
2=2,

c̃
c
=
sin(k�xe� )
k�xe�

3
2 + cos(k�xe� )

(10)

In general, the two-dimensional phase speed can be written in an analogous one-dimensional
form whenever �= �∗=arctan(1=�). In this case �x cos �=�y sin � and hence Equation (7)
reduces to

c̃
c
=F1Dc̃ (k�x cos �

∗) (11)

This is the one-dimensional phase speed on a grid with an e�ective spacing of �x cos �∗.
In the following results section, the e�ect of this ‘enhanced’ resolution along the directions
normal to the grid diagonals will be realized by a reduced phase error compared to those
along the co-ordinate directions.

Remark
When considering grids with aspect ratios other than unity, the appropriate Nyquist frequency
of the mesh should be based on the larger of �x or �y, i.e. the coarsest mesh spacing. In
the ensuing discussion, only �61 are considered which implies that the Nyquist limit for the
grid will be based on �x. Consideration of �¿1 would require that the grid Nyquist limit be
based on �y.

As suggested above, several of the methods considered cannot be written in the form of
Equation (7). These include the central di�erence with consistent mass (CD-Mc), the LSR
schemes, SUPG, and SUCV. The CD-Mc method is an ad hoc method derived by assuming
linear variation of the unknown over the control volumes for the mass matrix, and using
standard CD for the advection operator. Its two-dimensional phase speed is given by

c̃
c
=

16
(3 + cos �x)(3 + cos �y)

(
cos2 �

sin �x
�x

+ sin2 �
sin �y
�y

)
(12)

where we have introduced the notation �x= k�x cos �, and �y= �k�x sin � (= k�y sin �).
Equation (12) cannot be cast in the general form of Equation (7) because it does not revert
to the one-dimensional formula when the wave propagation direction is at right angles to the
mesh diagonals.
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However, as with the methods discussed above, one-dimensional behaviour is obtained for
propagation angles aligned with coordinate axes. Not surprisingly, both CD-Mc and CVFEM
yield identical phase speed behaviours along coordinate axes because their one-dimensional
formulae are identical (cf. Table II of Part I). Finally, it is of interest to note that lumping
the CD-Mc mass matrix results in the leading term on the right-hand side of Equation (12)
becoming unity, and the formula reverts to the phase speed for the CD method,

c̃
c
=

(
cos2 �

sin �x
�x

+ sin2 �
sin �y
�y

)
(13)

which follows the simple form of Equation (7).
The phase speed for LSR(0) is given by

c̃
c
= cos2 �

1
12�x

[2 sin �x(7 + 2 cos �y)− sin 2�x(1 + 2 cos �y)]

+ sin2 �
1
12�y

[2 sin �y(7 + 2 cos �x)− sin 2�y(1 + 2 cos �x)] (14)

This scheme also does not follow the general form of Equation (7), as it contains terms
involving cross products of the x and y components. These cross-terms arise because the
advection stencils include terms from all neighbouring grid points (cf. Appendix of Part I).
This is also true for the FEM and CVFEM operators, however the symbol factors conveniently
to eliminate the cross terms. Along the coordinate directions (i.e., in one dimension) Equation
(14) becomes

c̃
c
=
1
4’
(6 sin’− sin 2’) (15)

where ’= �x along the x direction and ’= �y along the y direction. Incidentally, this is the
one-dimensional version of Fromm’s method.
The phase speed for LSR(−1) is

c̃
c
= cos2 �

1
6�x

[4(2 + cos �y) sin �x − (1 + 2 cos �y) sin 2�x]

+ sin2 �
1
6�y

[4(2 + cos �x) sin �y − (1 + 2 cos �x) sin 2�y] (16)

Along the coordinate directions the phase speed is

c̃
c
=
1
2’
(4 sin’− sin 2’) (17)

where ’= �x along the x direction and ’= �y along the y direction. This is the one-
dimensional formula for SOU.
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The phase speed formulae for SUPG and SUCV are given by

c̃
c
=

(cos2 �G(�x) + sin
2 �G(�y))

[1 + �2(�x + �y)2(cos2 �G(�x) + sin
2 �G(�y))2]

×
[
1 +

��
2

((
1
Pex

+ 2�� cos2 �
)
F(�x) +

4 cos � sin �
�

��G(�x)G(�y)

+
(
1
Pey

+ 2�� sin
2 �

)
F(�y)

)]
(18)

where

F(’)=
2(1− cos’)

M(’)

G(’)=
sin’
’

1
M(’)

��=�(cos �+ � sin �)

Pex=
c�x
2�
; Pey=

c�y
2�

(19)

M(’) is the symbol for the mass matrix operator given in Table I of Part I and � is the
stabilization parameter. The two-dimensional formula reverts to the one-dimensional formula
along the coordinate directions.
Phase speed results. The phase speed results for our two-dimensional semi-discretizations

are presented in Figures 2–15. Figures (a) and (b) for each semi-discretization present c̃=c for
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Figure 2. Non-dimensional phase speed (c̃=c; radial) as a function of � (azimuthal) for the consistent
mass Galerkin �nite element method (FEM-Mc) with (a) �=1 and (b) �= 1

2 .
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Figure 3. Non-dimensional phase speed (c̃=c; radial) as a function of � (azimuthal) for consistent mass
matrix �nite element method SUPG with �opt; (a) �=1 and (b) �= 1

2 .
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Figure 4. Non-dimensional phase speed (c̃=c; radial) as a function of � (azimuthal) for consistent mass
matrix �nite element method SUPG with �= 1

2 ; (a) �=1 and (b) �=
1
2 .

grid aspect ratios of �=1 and 1
2 , respectively. As in the example polar plot, Figure 1, phase

speed curves are plotted for 2�x=�=0, 0.2, 0.4, 0.6, 0.8 and 1.0. In the absence of phase
errors, the ideal semi-discrete phase speed would exactly replicate the continuous phase speed
for the entire discrete spectrum from the limit 2�x=� → 0 to the grid Nyquist limit. Hence, in
the ideal case, the phase speed curves would be circular, each giving c̃=c=1. However, all of
the methods considered here introduce either leading or lagging phase speeds, the magnitudes
of which are dependent on wavelength, grid aspect ratio and propagation direction.
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Figure 5. Non-dimensional phase speed (c̃=c; radial) as a function of � (azimuthal) for the consistent
mass control volume �nite element method (CVFEM) with (a) �=1 and (b) �= 1

2 .
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Figure 6. Non-dimensional phase speed (c̃=c; radial) as a function of � (azimuthal) for consistent mass
matrix control volume �nite element method SUCV with �opt; (a) �=1 and (b) �= 1

2 .

Several points regarding the semi-discretizations are noted before beginning the discussion
of results. First, phase speed for the FEM-SUPG (Figures 3 and 4) and CVFEM-SUCV
(Figures 6 and 7) are presented for pure advection, i.e. when Pe → ∞. Second, results for
the lumped mass variants of FEM and CVFEM are not included here as their results are
signi�cantly degraded relative to their consistent mass counterparts (see Part I for examples
of the e�ects of mass lumping). Finally, the reader is reminded that the FOU scheme may
be decomposed into a centred second-order advection scheme with concomitant second-order
centred di�usion operator. For this reason, phase speed results for the FOU and CD scheme
are identical and so presented as one result.
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Figure 7. Non-dimensional phase speed (c̃=c; radial) as a function of � (azimuthal) for consistent mass
matrix control volume �nite element method SUCV with �= 1

2 ; (a) �=1 and (b) �=
1
2 .
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Figure 8. Non-dimensional phase speed (c̃=c; radial) as a function of � (azimuthal) for the central
di�erence method (also FOU). Results for aspect ratios of (a) �=1 and (b) �= 1

2 are shown.

Several characteristics are evident from the series of �gures presented here. First, the
�gures clearly indicate anisotropic wave propagation for all schemes considered with the
�= 1

2 cases demonstrating less �-dependence than their �=1 counterparts. Indeed, the �=1
cases all show quarter-symmetry while the �= 1

2 discretizations show half-symmetry, both be-
haviours being consistent with the symmetry of their respective spatial grids. It is also evident
from the �gures that this anisotropy generally increases with increasing 2�x=�. This observa-
tion is demonstrated quantitatively in Tables I and II where the coe�cient of variation of the
phase speed, &c̃, and its mean &c̃ are presented. The tables show that &c̃ generally grows with
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Figure 9. Non-dimensional phase speed (c̃=c; radial) as a function of � (azimuthal)
for the consistent mass matrix central di�erence discretization (CD-Mc). Results

for aspect ratios of (a) �=1 and (b) �= 1
2 are shown.
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Figure 10. Non-dimensional phase speed (c̃=c; radial) as a function of � (azimuthal)
for the second-order upwind �nite di�erence discretization (SOU). Results are shown

for aspect ratios of (a) �=1 and (b) �= 1
2 .

increasing 2�x=�. In terms of the &c̃ metric, and relative to the grid aspect ratio, �= 1
2 min-

imizes �-dependence for all but the LSR semi-discretizations. Finally, it is evident from a
method-to-method comparison of &c̃ that FEM-SUPG and CVFEM-SUCV minimize anisotropic
behaviour irrespective of grid aspect ratio given the proper choice of stabilization parame-
ter. Note that the LSR schemes provide good isotropy for the �=1 case but become more
anisotropic (relative to the other methods) for �= 1

2 .
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Figure 11. Non-dimensional phase speed (c̃=c; radial) as a function of � (azimuthal) for
the �nite di�erence discretization with third-order-upwind (TOU) di�erencing. Results for

aspect ratios of (a) �=1 and (b) �= 1
2 are shown.
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Figure 12. Non-dimensional phase speed (c̃=c; radial) as a function of � (azimuthal)
for Fromm’s method. Results for (a) �=1 and (b) �= 1

2 are shown.

The series of �gures in this section also provides information concerning the phase error
of each method. As suggested by the anisotropy discussion above, this error is dependent
on wave number as well as propagation angle. Indeed the methods generally demonstrate a
minimum error along the �=�=4 and �=2 directions for the unit and 1

2 aspect ratio cases
respectively. These ‘preferential’ directions are a result of the better resolving power of the
grid in these directions (cf. Section 3.1 Equation (11)). A quantitative measure of the discrete
phase errors is presented in Tables III and IV. As with &c̃, the phase errors, �c̃, generally
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Figure 13. Non-dimensional phase speed (c̃=c; radial) as a function of � (azimuthal)
for the QUICK scheme with (a) �=1 and (b) �= 1

2 .
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Figure 14. Non-dimensional phase speed (c̃=c; radial) as a function of � (az-
imuthal) for the node-centered �nite volume method with least squares gradient

reconstruction, LSR(0), with (a) �=1 and (b) �= 1
2 .

increase with increasing 2�x=�, peaking at the Nyquist limit. In terms of the �c̃ metric, the
�= 1

2 results minimize phase errors relative to the unit aspect ratio cases. Finally, it is evident
from a comparison of �c̃ between methods, that FEM-SUPG and CVFEM-SUCV minimize
errors, for either �, given the proper choice of stabilization parameter (�=�opt and 1

2 for
SUPG and SUCV, respectively). Note that FOU demonstrates by far the worst phase error
(in terms of �c̃) relative to the other semi-discretizations, regardless of aspect ratio.
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Figure 15. Non-dimensional phase speed (c̃=c; radial) as a function of �
(azimuthal) for the node-centered �nite volume method with least squares gradient

reconstruction, LSR(−1), with (a) �=1 and (b) �= 1
2 .

Phase speed results for # �= �. Although the bulk of our analyses assume that the wave
and velocity vectors are aligned, here we relax this restriction in order to show the ef-
fects on the phase velocity. Speci�cally, we consider the consistent mass Galerkin �nite
element semi-discretization (FEM-Mc). The resulting equation for the discrete phase speed is
given by

c̃=‖u‖ = [cos# cos �(sin �x=�x)(3=(2 + cos �x))

+ sin # sin �(sin �y=�y)(3=(2 + cos �y))] (20)

where we have normalized the discrete phase speed by the magnitude of the advective velocity
rather than the continuous phase speed,

c=‖u‖= u · k=k‖u‖=[cos# cos �+ sin # sin �] (21)

as is done for the �=# cases (cf. Equation (2.6-200) in Gresho and Sani [2]). We chose this
normalization here as the normalization c̃=c used elsewhere is generally unbounded (Equation
(21) has zero-crossings when Equation (20) is �nite) for the � �= # cases.
Figure 16 (a) and (b) illustrate the non-dimensional discrete phase speed, Equation (20), for

wave vector angles �=�=8; �=4, respectively at dimensionless wave numbers of 2�x=�=0,
0.2, 0.4, 0.6, 0.8, 1.0. In the �gures, the azimuthal co-ordinate represents the direction of
the velocity vector, #. Results are presented for �=1 and positive and negative values are
shown as solid and dashed lines, respectively. The continuous non-dimensional phase speed
of Equation (21) is also presented in the �gure as the bold solid/dashed lines and represents
the ideal. Several points are evident from the �gures. First, the continuous phase speed forms
lobes that exhibit quarter symmetry about �+n�=2 and are independent of wave number. The
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Table I. Coe�cient of variation of phase speed, &c̃, as a function of 2�x=�, and its average,
&c̃, for the two-dimensional, �=1 semi-discretizations.

&c̃ as a function of 2�x=�

Method 0.0 0.2 0.4 0.6 0.8 1.0 &c̃

FEM-Mc 0.0 2:43e− 4 4:60e− 3 3:14e− 2 1:55e− 1 7:45e− 1 1:13e− 1
SUPG �opt 0.0 9:36e− 5 1:48e− 3 8:64e− 3 6:44e− 2 6:43e− 1 7:92e− 2
SUPG �= 1

2 0.0 6:13e− 4 8:79e− 3 3:68e− 2 7:56e− 2 5:32e− 1 7:75e− 2
CVFEM-Mc 0.0 3:26e− 3 1:79e− 2 6:48e− 2 2:11e− 1 7:40e− 1 1:33e− 1
SUCV �opt 0.0 2:95e− 3 1:27e− 2 3:82e− 2 1:41e− 1 6:80e− 1 1:07e− 1
SUCV �= 1

2 0.0 2:17e− 3 4:37e− 3 1:77e− 2 4:92e− 2 5:81e− 1 7:28e− 2
FOU/CD 0.0 1:19e− 2 5:06e− 2 1:29e− 1 2:85e− 1 7:00e− 1 1:65e− 1
CD-Mc 0.0 1:19e− 2 5:21e− 2 1:38e− 1 3:22e− 1 7:60e− 1 1:81e− 1
SOU 0.0 1:72e− 2 2:39e− 2 3:53e− 2 2:15e− 1 7:72e− 1 1:36e− 1
TOU 0.0 1:31e− 3 1:85e− 2 8:22e− 2 2:47e− 1 7:38e− 1 1:44e− 1
Fromm’s 0.0 3:62e− 3 5:71e− 3 6:66e− 2 2:36e− 1 7:50e− 1 1:37e− 1
QUICK 0.0 3:86e− 3 2:56e− 2 9:16e− 2 2:55e− 1 7:31e− 1 1:48e− 1
LSR(0) 0.0 4:68e− 3 8:14e− 3 1:31e− 2 1:12e− 1 6:36e− 1 9:13e− 2
LSR(−1) 0.0 1:92e− 2 4:81e− 2 5:29e− 2 2:46e− 2 5:86e− 1 8:75e− 2

Table II. Coe�cient of variation of phase speed, &c̃, as a function of 2�x=�, and its average,
&c̃, for the two-dimensional, �= 1

2 semi-discretizations.

&c̃ as a function of 2�x=�

Method 0.0 0:2 0:4 0:6 0:8 1:0 &c̃

FEM-Mc 0.0 3:11e− 4 5:75e− 3 3:72e− 2 1:63e− 1 5:30e− 1 9:42e− 2
SUPG �opt 0.0 3:65e− 5 4:90e− 4 3:81e− 3 5:37e− 2 4:44e− 1 5:61e− 2
SUPG �= 1

2 0.0 8:44e− 4 1:12e− 2 4:43e− 2 8:85e− 2 3:55e− 1 6:45e− 2
CVFEM-Mc 0.0 5:17e− 3 2:65e− 2 8:64e− 2 2:37e− 1 5:51e− 1 1:26e− 1
SUCV �opt 0.0 4:68e− 3 1:89e− 2 5:03e− 2 1:51e− 1 4:91e− 1 9:40e− 2
SUCV �= 1

2 0.0 3:50e− 3 4:67e− 3 8:47e− 3 2:83e− 2 4:04e− 1 4:94e− 2
FOU/CD 0.0 1:91e− 2 7:79e− 2 1:82e− 1 3:39e− 1 5:62e− 1 1:80e− 1
CD-Mc 0.0 8:82e− 3 3:99e− 2 1:11e− 1 2:60e− 1 5:22e− 1 1:36e− 1
SOU 0.0 3:02e− 2 5:80e− 2 1:23e− 2 2:07e− 1 5:71e− 1 1:18e− 1
TOU 0.0 1:70e− 3 2:41e− 2 1:04e− 1 2:76e− 1 5:65e− 1 1:38e− 1
Fromm’s 0.0 6:62e− 3 2:17e− 3 7:38e− 2 2:54e− 1 5:67e− 1 1:24e− 1
QUICK 0.0 5:94e− 3 3:65e− 2 1:21e− 1 2:90e− 1 5:65e− 1 1:47e− 1
LSR(0) 0.0 6:73e− 3 3:49e− 3 6:80e− 2 2:44e− 1 5:75e− 1 1:22e− 1
LSR(−1) 0.0 3:04e− 2 6:17e− 2 2:71e− 2 1:92e− 1 5:95e− 1 1:22e− 1

discrete phase speeds exhibit a similar symmetry for the �=�=4 case but deviate from this
symmetry for the �=�=8 case for all but the very small wave number (long wavelength)
signals. Interestingly, quarter symmetry appears to be generally preserved for the discrete
phase (for �=�=8), but with symmetry angles increasingly modi�ed from the continuous

Published in 2004 by John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 45:889–920



904 T. E. VOTH, M. J. MARTINEZ AND M. A. CHRISTON

Table III. RMS error of discrete phase speed, �c̃, as a function of 2�x=�, and its average,
�c̃, for the two-dimensional, �= 1

2 semi-discretizations.

�c̃ as a function of 2�x=�

Method 0.0 0:2 0:4 0:6 0:8 1:0 �c̃

FEM-Mc 0.0 6:14e− 4 1:12e− 2 6:92e− 2 2:71e− 1 6:90e− 1 1:39e− 1
SUPG �opt 0.0 2:81e− 4 3:97e− 3 1:46e− 2 6:78e− 2 5:61e− 1 7:34e− 2
SUPG �= 1

2 0.0 2:32e− 3 2:91e− 2 1:14e− 1 2:62e− 1 4:87e− 1 1:30e− 1
CVFEM-Mc 0.0 1:35e− 2 6:36e− 2 1:82e− 1 4:15e− 1 7:45e− 1 2:09e− 1
SUCV �opt 0.0 1:22e− 2 4:54e− 2 1:04e− 1 2:54e− 1 6:43e− 1 1:47e− 1
SUCV �= 1

2 0.0 9:26e− 3 1:28e− 2 2:18e− 2 5:21e− 2 5:14e− 1 7:06e− 2
FOU/CD 0.0 4:99e− 2 1:89e− 1 3:91e− 1 6:17e− 1 8:29e− 1 3:32e− 1
CD-Mc 0.0 1:20e− 2 5:30e− 2 1:46e− 1 3:39e− 1 6:41e− 1 1:74e− 1
SOU 0.0 8:97e− 2 2:39e− 1 2:25e− 1 2:14e− 1 6:60e− 1 2:20e− 1
TOU 0.0 3:38e− 3 4:75e− 2 1:94e− 1 4:55e− 1 7:61e− 1 2:16e− 1
Fromm’s 0.0 1:99e− 2 2:69e− 2 1:02e− 1 3:78e− 1 7:31e− 1 1:78e− 1
QUICK 0.0 1:50e− 2 8:27e− 2 2:43e− 1 4:94e− 1 7:77e− 1 2:44e− 1
LSR(0) 0.0 1:87e− 2 1:08e− 2 1:47e− 1 4:63e− 1 8:19e− 1 2:10e− 1
LSR(−1) 0.0 8:73e− 2 2:07e− 1 1:07e− 1 3:11e− 1 8:10e− 1 2:23e− 1

Table IV. RMS error of discrete phase speed, �c̃, as a function of 2�x=�, and its average,
�c̃, for the two-dimensional, �= 1

2 semi-discretizations.

�c̃ as a function of 2�x=�

Method 0.0 0:2 0:4 0:6 0:8 1:0 �c̃

FEM-Mc 0.0 4:31e− 4 7:86e− 3 4:87e− 2 1:91e− 1 4:85e− 1 9:80e− 2
SUPG �opt 0.0 7:35e− 5 9:49e− 4 3:95e− 3 5:87e− 2 4:11e− 1 5:39e− 2
SUPG �= 1

2 0.0 1:28e− 3 1:71e− 2 6:94e− 2 1:52e− 1 3:39e− 1 8:19e− 2
CVFEM-Mc 0.0 9:58e− 3 4:51e− 2 1:29e− 1 2:92e− 1 5:24e− 1 1:48e− 1
SUCV �opt 0.0 8:88e− 3 3:45e− 2 8:23e− 2 1:97e− 1 4:66e− 1 1:11e− 1
SUCV �= 1

2 0.0 7:17e− 3 1:42e− 2 1:24e− 2 3:34e− 2 3:80e− 1 5:15e− 2
FOU/CD 0.0 3:56e− 2 1:36e− 1 2:81e− 1 4:46e− 1 6:05e− 1 2:40e− 1
CD-Mc 0.0 8:83e− 3 4:01e− 2 1:12e− 1 2:55e− 1 4:64e− 1 1:30e− 1
SOU 0.0 6:43e− 2 1:76e− 1 1:95e− 1 2:35e− 1 5:07e− 1 1:85e− 1
TOU 0.0 2:37e− 3 3:33e− 2 1:36e− 1 3:18e− 1 5:32e− 1 1:51e− 1
Fromm’s 0.0 1:44e− 2 2:30e− 2 7:63e− 2 2:67e− 1 5:09e− 1 1:27e− 1
QUICK 0.0 1:06e− 2 5:84e− 2 1:71e− 1 3:48e− 1 5:47e− 1 1:72e− 1
LSR(0) 0.0 1:41e− 2 1:79e− 2 8:00e− 2 2:85e− 1 5:42e− 1 1:34e− 1
LSR(−1) 0.0 6:38e− 2 1:68e− 1 1:55e− 1 1:89e− 1 5:16e− 1 1:67e− 1

case with increased 2�x=�. As expected, both cases exhibit clear dependence of the discrete
phase speed with signal wavelength with the discrete phase speed tending to the continuous
value for long wavelengths.
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Figure 16. Non-dimensional phase speed (c̃=‖u‖) for the consistent mass �nite element method (FEM-
Mc) as a function of # (azimuthal) for wave vector angles of (a) �=�=8 and (b) �=�=4 for an
aspect ratio of �=1. Negative and positive phase speed values are shown as solid and dashed-lines

respectively while the superposed bold lines show the analytic solution (c=‖u‖).

3.2. Discrete di�usivity

This section begins with a presentation of the analytic expressions for the dimensionless
discrete di�usivity for all the semi-discretizations considered. A summary of the discrete
di�usivity results in terms of polar plots and the anisotropy and error metrics follows.
Discrete di�usivity formulae. Some, but not all, of the two-dimensional formulae for dis-

crete di�usivity can be written in the same form as for phase error, Equation (7), if we replace
F1Dc̃ with the one-dimensional formula for dimensionless discrete di�usivity, F1D�̃ , given in Ta-
ble VI of Part I. The result is

�̃
�
= cos2 �F1D�̃ (k�x cos �) + sin

2 �F1D�̃ (�k�x sin �) (22)

The methods which have this form include all of the FDMs (CD, FOU, SOU, TOU, QUICK,
and Fromm) and the LSR schemes, because they all share the same 5-point CD di�usion
stencil and mass matrix. Although they do not share similar operators, FEM and CVFEM can
also be written in the form of Equation (22).
From Part I, the one-dimensional discrete di�usivity for FEM or CVFEM may be written

in terms of ’ as

F1D�̃ =
2(1− cos’)

’2
1

M(’)

Substitution into Equation (22) yields the two-dimensional formula for FEM/CVFEM,

�̃
�
= cos2 �

2(1− cos(k�x cos �))
(k�x cos �)2

1
M(�x)

+ sin2 �
2(1− cos(�k�x sin �))

(�k�x sin �)2
1

M(�y)
(23)
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Figure 17. Non-dimensional discrete di�usivity for the consistent mass Galerkin
�nite element method with (a) �=1 and (b) �= 1

2 .

Notice that the discrete di�usivities represented by Equation (22) degenerate to the one-
dimensional form when the wave is propagating in a direction normal to the grid diagonals,
i.e. when �= �∗=arctan(1=�). In this case Equation (22) becomes the one-dimensional version
of discrete di�usivity,

�̃
�
=F1D�̃ (k�x cos �

∗) (24)

on an e�ective mesh spacing of k�x cos �∗, the spacing between grid diagonals.
The two-dimensional discrete di�usivity for SUPG and SUCV is

�̃
�
=

[cos2 �F(�x)=�2x + sin
2 �F(�y)=�2y]

[1 + �2(�x + �y)2(cos2 �G(�x) + sin
2 �G(�y))2]

(25)

in terms of the functions de�ned in Equation (19).
Discrete di�usivity results. The discrete di�usivity results for our two-dimensional semi-

discretizations are presented in Figures 17–24. Figures (a) and (b) present �̃=� for grid aspect
ratios of �=1 and 1

2 , respectively. Dimensionless discrete di�usivity curves are plotted for
2�x=�=0, 0.2, 0.4, 0.6, 0.8 and 1.0. In the ideal case, the discrete di�usivity would exactly
replicate the continuous di�usivity for the entire discrete spectrum from the limit 2�x=� → 0
to the grid Nyquist limit. Hence, in the ideal case, the discrete di�usivity curves would be
circular, each giving �̃=�=1. However, all of the methods considered here are either over- or
under-di�usive, the magnitude of the error in di�usivity being dependent on wavelength, grid
aspect ratio and propagation direction.
Several points regarding the semi-discretizations are noted before beginning the discus-

sion of results. First, results for the lumped mass variants of FEM and CVFEM are not
included here because their results are signi�cantly degraded relative to their consistent mass
counterparts. Second, as the �nite di�erence semi-discretizations use second-order centred
approximations for the di�usion operator in conjunction with a lumped mass matrix, they
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Figure 18. Non-dimensional discrete di�usivity (�̃=�; radial) as a function of � (azimuthal) for consistent
mass matrix �nite element method SUPG with �opt with (a) �=1 and (b) �= 1

2 .
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Figure 19. Non-dimensional discrete di�usivity (�̃=�; radial) as a function of � (azimuthal) for consistent
mass matrix �nite element method SUPG with �= 1

2 with (a) �=1 and (b) �=
1
2 .

yield identical discrete di�usivities (the exception being CD-Mc where the ‘consistent’ mass
matrix is used). For this reason, discrete di�usivity results for the lumped mass �nite di�erence
schemes considered here are identical and presented as one result labeled FDM.
Several characteristics are evident from the series of �gures presented here. First, the

�gures clearly indicate anisotropic discrete di�usivities for all schemes considered. As with
the two-dimensional phase speed results, the �=1 cases all show quarter-symmetry while
the �= 1

2 discretizations show half-symmetry. The �gures also suggest that the anisotropy
generally increases with increasing 2�x=�. This observation is demonstrated quantitatively in
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Figure 20. Non-dimensional discrete di�usivity for the consistent mass control
volume �nite element method with (a) �=1 and (b) �= 1
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Figure 21. Non-dimensional discrete di�usivity (�̃=�; radial) as a function of � (azimuthal) for consistent
mass matrix control volume �nite element method SUCV with �opt with (a) �=1 and (b) �= 1

2 .

Tables V and VI where the coe�cient of variation of the discrete di�usivity, &�̃, and its mean,
&�̃, are presented. The tables show that &�̃ generally grows with increasing dimensionless wave
number. In terms of the &�̃ metric, and relative to the grid aspect ratio, �= 1

2 minimizes
�-dependence for all but the FEM-Mc and SUCV �= 1

2 semi-discretizations. Finally, it is
evident from a method-to-method comparison of &�̃ that FEM-Mc and CVFEM-Mc minimize
anisotropic behaviour regardless of grid aspect ratio. Note that the SUCV and SUPG schemes
can achieve equal or better anisotropy performance relative to FEM and CVFEM given
the proper choice of � though a poor choice yields the overall worst anisotropy. It is also

Published in 2004 by John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 45:889–920



GENERALIZED FOURIER ANALYSES: PART II 909

2∆x/λ 2∆x/λ
1.0
0.8
0.6
0.4
0.2
0.0

0.00
0

90

270

1.25
180

0.0
0.2
0.4
0.6
0.8
1.0

0.00
0

90

270

1.25
180

(a) (b)

Figure 22. Non-dimensional discrete di�usivity (�̃=�; radial) as a function of � (azimuthal) for consistent
mass matrix control volume �nite element method SUCV with �= 1

2 with (a) �=1 and (b) �=
1
2 .
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Figure 23. Non-dimensional discrete di�usivity for the �nite di�erence method
(FDM, 5-point stencil) with aspect ratios of (a) �=1 and (b) �= 1

2 .

interesting to note that the best choice of stabilization parameter for SUCV (�= 1
2) in terms

of phase speed anisotropy (cf. Tables VII and VIII) is the worst choice for discrete di�usivity
for that method. A similar property holds for SUPG with �=�opt.
The series of �gures in this section also provides information concerning the error in the

discrete di�usivity relative to its continuum counterpart for each method. As suggested by the
anisotropy discussion above, this error is dependent on wave number as well as propagation
angle. A quantitative measure of the discrete di�usivity errors is presented in Tables VII and
VIII. As with &�̃, the discrete di�usivity errors, ��̃, generally increase with increasing 2�x=�,
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Figure 24. Non-dimensional discrete di�usivity (�̃=�; radial) as a function of � (azimuthal)
for the node-centred �nite volume method with second order gradient approximation

and consistent mass matrix (CD-Mc) with (a) �=1 and (b) �= 1
2 .

peaking at the Nyquist limit. In terms of the ��̃ metric, the �= 1
2 results minimize di�usivity

errors relative to the unit aspect ratio cases for all the methods. Finally, it is evident from
a method-to-method comparison of ��̃ that CVFEM-Mc minimizes errors, irrespective of �.
Note that the SUPG and SUCV semi-discretizations yield by far the worst discrete di�usivity
error (in terms of ��̃) relative to the other semi-discretizations, irrespective of aspect ratio.

3.3. Arti�cial di�usivity

This section examines arti�cial di�usivity associated with our two-dimensional semi-discre-
tizations. As noted in Part I, arti�cial di�usion may be added deliberately (e.g. SUPG/SUCV)
or be a by-product of the discretization (e.g. �rst-order upwind). While in general not a
desirable feature of a method, arti�cial di�usivity can be used to stabilize a discretization
scheme. In terms of arti�cial di�usivity, stabilization is achieved through the annihilation
(damping) of numerical artifacts such as short wavelength dispersion errors in under-resolved
convection-dominated problems. In this light, an ideal arti�cial di�usivity function for either
one- or two-dimensional discretizations would only be active in the large wave number part of
the discrete spectrum, near the Nyquist limit for example, and be negligible otherwise, going
to zero at the long wavelength limit. For two-dimensional discretizations, it is also desirable
that the arti�cial di�usivity have an angular variation similar to the angular variation observed
in the phase error so that short wavelength dispersion errors are damped at the same rate,
regardless of propagation direction.
This section begins with a presentation of the analytic expressions for the non-dimensional

arti�cial di�usivity, presented in terms of 1=Parte (=2�art=c�x), for all the semi-discrete meth-
ods considered. A summary of the arti�cial di�usivity results in terms of polar plots and error
metrics follows.
Arti�cial di�usivity formulae. As was the case for several of the previously discussed two-

dimensional discrete phase speed and di�usivity formulae, the two-dimensional formulae for
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Table V. Coe�cient of variation of discrete di�usivity, &�̃, as a function of 2�x=�, and its average,
&�̃, for the two-dimensional, �=1, semi-discretization considered here.

&�̃ as a function of 2�x=�

Method 0.0 0.2 0.4 0.6 0.8 1.0 &�̃

FEM-Mc 0.0 5:78e− 3 2:24e− 2 4:38e− 2 4:35e− 2 5:07e− 2 2:82e− 2
SUPG �opt 0.0 1:35e− 2 5:09e− 2 1:07e− 1 1:79e− 1 1:56e− 1 8:57e− 2
SUPG �= 1

2 0.0 3:22e− 2 1:02e− 1 1:89e− 1 3:32e− 1 4:07e− 1 1:72e− 1
CVFEM-Mc 0.0 5:85e− 3 2:37e− 2 5:47e− 2 1:01e− 1 1:64e− 1 5:34e− 2
SUCV �opt 0.0 1:06e− 2 3:85e− 2 7:58e− 2 1:04e− 1 5:08e− 2 5:08e− 2
SUCV �= 1

2 0.0 2:17e− 3 4:37e− 3 1:77e− 2 4:92e− 2 5:81e− 1 7:28e− 2
FDM 0.0 1:19e− 2 5:06e− 2 1:29e− 1 2:85e− 1 7:00e− 1 1:65e− 1
CD-Mc 0.0 1:19e− 2 5:21e− 2 1:38e− 1 3:22e− 1 7:60e− 1 1:81e− 1

Table VI. Coe�cient of variation of discrete di�usivity, &�̃, as a function of 2�x=�, and its average,
&�̃, for the two-dimensional, �= 1

2 semi-discretizations considered here.

&�̃ as a function of 2�x=�

Method 0.0 0.2 0.4 0.6 0.8 1.0 &�̃

FEM-Mc 0.0 9:45e− 3 3:73e− 2 7:78e− 2 1:01e− 1 4:29e− 2 4:94e− 2
SUPG �opt 0.0 7:78e− 3 3:10e− 2 7:29e− 2 1:48e− 1 1:84e− 1 7:03e− 2
SUPG �= 1

2 0.0 2:37e− 2 7:73e− 2 1:34e− 1 2:43e− 1 4:48e− 1 1:40e− 1
CVFEM-Mc 0.0 4:56e− 3 1:58e− 2 2:34e− 2 7:75e− 3 9:27e− 2 1:96e− 2
SUCV �opt 0.0 6:21e− 3 2:30e− 2 4:78e− 2 7:76e− 2 7:71e− 2 3:86e− 2
SUCV �= 1

2 0.0 2:51e− 2 7:76e− 2 1:26e− 1 2:01e− 1 2:80e− 1 1:14e− 1
FDM 0.0 9:46e− 3 3:78e− 2 8:47e− 2 1:49e− 1 2:30e− 1 7:92e− 2
CD-Mc 0.0 5:58e− 3 2:12e− 2 4:48e− 2 8:54e− 2 1:79e− 1 4:94e− 2

Table VII. RMS discrete di�usivity error, ��̃, as a function of 2�x=�, and its average,
��̃, for the two-dimensional, �=1 semi-discretizations considered here.

��̃ as a function of 2�x=�

Method 0.0 0.2 0.4 0.6 0.8 1.0 ��̃

FEM-Mc 0.0 2:56e− 2 1:05e− 1 2:38e− 1 3:70e− 1 3:26e− 1 1:80e− 1
SUPG �opt 0.0 2:18e− 2 7:37e− 2 1:26e− 1 1:76e− 1 1:88e− 1 9:84e− 2
SUPG �= 1

2 0.0 1:20e− 1 3:28e− 1 4:61e− 1 4:63e− 1 3:78e− 1 3:12e− 1
CVFEM-Mc 0.0 1:24e− 2 4:56e− 2 8:06e− 2 7:19e− 2 1:12e− 1 5:33e− 2
SUCV �opt 0.0 3:04e− 2 9:92e− 2 1:60e− 1 1:79e− 1 1:84e− 1 1:12e− 1
SUCV �= 1

2 0.0 1:28e− 1 3:37e− 1 4:60e− 1 4:65e− 1 3:81e− 1 3:16e− 1
FDM 0.0 2:51e− 2 9:69e− 2 2:06e− 1 3:39e− 1 4:79e− 1 1:81e− 1
CD-Mc 0.0 2:54e− 2 1:01e− 1 2:19e− 1 3:49e− 1 4:51e− 1 1:84e− 1
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Table VIII. RMS discrete di�usivity error, ��̃, as a function of 2�x=�, and its average,
��̃, for the two-dimensional, �= 1

2 semi-discretizations considered here.

��̃ as a function of 2�x=�

Method 0.0 0.2 0.4 0.6 0.8 1.0 ��̃

FEM-Mc 0.0 1:83e− 2 7:50e− 2 1:70e− 1 2:65e− 1 2:46e− 1 1:30e− 1
SUPG �opt 0.0 1:19e− 2 4:32e− 2 8:57e− 2 1:47e− 1 1:82e− 1 7:57e− 2
SUPG �= 1

2 0.0 7:37e− 2 2:26e− 1 3:56e− 1 4:15e− 1 4:38e− 1 2:58e− 1
CVFEM-Mc 0.0 8:86e− 3 3:27e− 2 5:86e− 2 5:79e− 2 9:32e− 2 4:09e− 2
SUCV �opt 0.0 1:75e− 2 6:11e− 2 1:11e− 1 1:50e− 1 1:91e− 1 8:70e− 2
SUCV �= 1

2 0.0 7:96e− 2 2:37e− 1 3:64e− 1 4:25e− 1 4:43e− 1 2:65e− 1
FDM 0.0 1:79e− 2 6:92e− 2 1:48e− 1 2:43e− 1 3:46e− 1 1:30e− 1
CD-Mc 0.0 1:64e− 2 6:44e− 2 1:38e− 1 2:19e− 1 3:05e− 1 1:18e− 1

arti�cial di�usivity for SOU, TOU, Fromm, and QUICK can be written in the form

2�art
c

= (�x cos �) cos2 �F1D�art (k�x cos �)

+(�y sin �) sin2 �F1D�art (k�y sin �) (26)

where F1D�art (’) denotes the dimensionless one-dimensional formula for arti�cial di�usivity as
given in Table VIII of Part I. In terms of the Parte de�ned previously, the formula becomes

1
Parte

= cos3 �F1D�art (k�x cos �) + � sin
3 �F1D�art (�k�x sin �) (27)

When �= �∗=arctan(1=�) (i.e. waves are propagating perpendicular to mesh diagonals)
Equation (27) reverts to the one-dimensional version with an e�ective mesh spacing
(�x cos �∗)

1
Parte cos �∗ =

2�art
c�x cos �∗ =F

1D
�art (k�x cos �

∗) (28)

Note that Equation (28) also includes the e�ective grid spacing in the de�nition of an e�ective
Peclet number, Parte cos �∗.
The remaining schemes do not have as simple a form as Equation (27); these include the

LSR schemes, SUPG and SUCV. Dimensionless arti�cial di�usivity for the LSR(−1) scheme
is

1
Parte

=
cos2 �
3�2x

[11 + (1 + 2 cos �y) cos 2�x − 12 cos �x − 2 cos �y]

+
sin2 �
3�2y

[11 + (1 + 2 cos �x) cos 2�y − 12 cos �y − 2 cos �x] (29)

Along the co-ordinate directions this reduces to the arti�cial di�usion formula for SOU. The
two-dimensional arti�cial di�usion formula for LSR(0) is 1

2 times the formula for LSR(−1).
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Figure 25. Non-dimensional arti�cial di�usivity (1=Parte ; radial) as a function of � (azimuthal) for con-
sistent mass matrix �nite element method SUPG with �opt for (a) �=1 and (b) �= 1

2 .

Along co-ordinate directions the LSR(−1) scheme reduces to the one-dimensional form which
is, incidentally, also Fromm’s method.
The arti�cial di�usivity for SUPG and SUCV is given by

1
Parte

=4��
[cos4 �=�2xM(�x)((1− cos �x)− sin2 �=2M(�x)) + sin4 �=�2yM(�y)((1− cos �y)− sin2 �=2M(�y))]

[1 + �2(�x + �y)2(cos2 �G(�x) + sin2 �G(�y))2]
(30)

in terms of the de�nitions in Equation (19) and the symbol for the mass matrix, M(�) given
in Table I of Part I. The similarity of the various terms to the one-dimensional version is
clear (see Table VIII of Part I). The formulae revert to the corresponding one-dimensional
formulae along the co-ordinate directions.
Arti�cial di�usivity results. The arti�cial di�usivity results for the two-dimensional semi-

discretizations are presented in Figures 25–31. Figures (a) and (b) for each method present
dimensionless arti�cial di�usivity, 1=Parte , for grid aspect ratios of �=1 and

1
2 , respectively.

Dimensionless arti�cial di�usivity curves are plotted for 2�x=�=0, 0.2, 0.4, 0.6, 0.8 and 1.0.
All the methods show quarter- and half-symmetry for the � =1 and 1

2 aspect ratio cases,
respectively—consistent with the symmetry of the underlying spatial grid. Additionally, it is
clear that the arti�cial di�usion functions in general display more anisotropy than the other
dispersion and di�usion relations. This anisotropy can be understood, at least in part, by
considering schemes characterized by Equation (27). Although the remaining schemes (i.e.
LSR, SUPG and SUCV) incorporate cross terms (as noted in the previous discussion) their
behaviour may be at least partially explained in terms of the following discussion.
With the obvious exception of FOU, the one-dimensional functions (F1D�art ) provide signi�cant

arti�cial di�usion only at short wavelengths and very little at long wavelengths (see Part I).
The reduced e�ective grid spacing (�x cos �∗) in Equation (28) accentuates this spectral
character of the one-dimensional arti�cial di�usivity functions. The (directionally dependent)
e�ective grid spacing skews the range of the arti�cial di�usivity functions toward the long
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Figure 26. Non-dimensional arti�cial di�usivity (1=Parte ; radial) as a function of � (azimuthal) for con-
sistent mass matrix �nite element method SUPG with �= 1

2 for (a) �=1; and (b) �=
1
2 .
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Figure 27. Non-dimensional arti�cial di�usivity (1=Parte ; radial) as a function of � (azimuthal) for con-
sistent mass matrix control volume �nite element method SUCV with �opt for (a) �=1 and (b) �= 1

2 .

wave spectrum. For example, for �= 1
2 waves oriented along �= �

∗=arctan(2) will experience
arti�cial di�usivity of the form (Equation (28))

1
Parte

=
1√
5
F1D�art

(
k�x√
5

)
(31)

in which the formula is purposely scaled in terms of Parte , as it appears in the plots. Thus, the
arti�cial di�usivity along this direction is 1=

√
5 of the one-dimensional function evaluated over

the reduced wave number range, 062�x=�61=
√
5; thus, arti�cial di�usivity is much reduced
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Figure 28. Non-dimensional arti�cial di�usivity (1=Parte ; radial) as a function of �
(azimuthal) for consistent mass matrix control volume �nite elementmethod SUCV

with �= 1
2 for (a) �=1 and (b) �=

1
2 (right).
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Figure 29. Non-dimensional arti�cial di�usivity (1=Parte ; radial) as a function of �
(azimuthal) for the �rst-order upwind (FOU) semi-discretization. Results for aspect

ratios of (a) �=1 and (b) �= 1
2 are shown.

in this direction as compared to the horizontal direction. However, the phase error in this
direction will also be less relative to the horizontal direction (see Equation (7)), therefore much
less arti�cial di�usivity is needed in this direction. Indeed, the �gures demonstrate that arti�cial
di�usivity is generally maximized along the x- and y-coordinate directions when �=1, and
along the x-coordinate direction for �= 1

2 . Recall that these directions correspond to the worst
phase speed accuracy for each of these aspect ratios. For methods characterized by Equation
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Figure 30. Non-dimensional arti�cial di�usivity (1=Parte ; radial) as a function of � (azimuthal)
for the second-order upwind (SOU) semi-discretization. Results are shown for (a) �=1
and (b) �= 1

2 . The �gure also depicts arti�cial di�usivity for TOU, QUICK, and Fromm’s
method, with a scaled radial coordinate, see Equation (27) and Table VIII of Part I.

The plots show 3=Parte for TOU, 4=Parte for QUICK, and 2=Parte for Fromm’s method.
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Figure 31. Non-dimensional arti�cial di�usivity (1=Parte ; radial) as a function of � (azimuthal) for the
least squares reconstruction method, LSR(−1). Results for (a) �=1 and (b) �= 1

2 are shown. The �gure
also shows 2=Parte for the LSR(0) least squares reconstruction method, i.e. the arti�cial di�usion for

LSR(0) is one-half that of LSR(−1), see Equation (27) and Table VIII of Part I.

(27), arti�cial di�usivity is generally minimized along the �= �∗ direction, corresponding to
the best dispersion accuracy for those same methods. Clearly, the anisotropy of the arti�cial
di�usivity is consistent with the anisotropy of the concomitant dispersive behaviour. Hence,
coe�cient of variation is not an appropriate metric for comparing methods and is not shown.
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Table IX. RMS value of the dimensionless arti�cial di�usivity, �art , as a function of 2�x=�,
and its average, �art , for the two-dimensional �=1 semi-discretizations considered here.

�art as a function of 2�x=�

Method 0.0 0.2 0.4 0.6 0.8 1.0 �art

SUPG �opt 0.0 1:40e− 2 6:03e− 2 1:57e− 1 3:48e− 1 5:29e− 1 1:69e− 1
SUPG �= 1

2 0.0 2:47e− 2 8:66e− 2 1:92e− 1 4:36e− 1 9:13e− 1 2:39e− 1
SUCV �opt 0.0 2:04e− 2 8:06e− 2 1:81e− 1 3:14e− 1 3:75e− 1 1:57e− 1
SUCV �= 1

2 0.0 3:60e− 2 1:19e− 1 2:39e− 1 4:45e− 1 6:50e− 1 2:33e− 1
FOU 8:55e− 1 8:32e− 1 7:67e− 1 6:69e− 1 5:50e− 1 4:26e− 1 6:92e− 1
SOU 0.0 1:33e− 1 4:46e− 1 7:42e− 1 8:58e− 1 7:68e− 1 5:13e− 1
TOU 0.0 4:44e− 2 1:49e− 1 2:47e− 1 2:86e− 1 2:56e− 1 1:71e− 1
Fromm’s 0.0 6:67e− 2 2:23e− 1 3:71e− 1 4:29e− 1 3:84e− 1 2:56e− 1
QUICK 0.0 3:34e− 2 1:12e− 1 1:86e− 1 2:15e− 1 1:92e− 1 1:28e− 1
LSR(0) 0.0 8:39e− 2 2:76e− 1 4:47e− 1 5:00e− 1 4:31e− 1 3:05e− 1
LSR(−1) 0.0 1:68e− 1 5:52e− 1 8:95e− 1 1:00 8:63e− 1 6:09e− 1

Table X. RMS value of the dimensionless arti�cial di�usivity, �art , as a function of 2�x=�,
and its average, �art , for the two-dimensional �=1 semi-discretizations considered here.

�art as a function of 2�x=�

Method 0.0 0:2 0:4 0:6 0:8 1:0 �art

SUPG �opt 0.0 9:07e− 3 3:98e− 2 1:06e− 1 2:34e− 1 3:44e− 1 1:12e− 1
SUPG �= 1

2 0.0 1:63e− 2 6:00e− 2 1:36e− 1 3:09e− 1 6:08e− 1 1:65e− 1
SUCV �opt 0.0 1:32e− 2 5:31e− 2 1:21e− 1 2:09e− 1 2:42e− 1 1:03e− 1
SUCV �= 1

2 0.0 2:38e− 2 8:19e− 2 1:68e− 1 3:09e− 1 4:28e− 1 1:59e− 1
FOU 6:66e− 1 6:51e− 1 6:09e− 1 5:45e− 1 4:70e− 1 3:92e− 1 5:61e− 1
SOU 0.0 9:36e− 2 3:13e− 1 5:21e− 1 6:08e− 1 5:62e− 1 3:63e− 1
TOU 0.0 3:12e− 2 1:04e− 1 1:74e− 1 2:03e− 1 1:87e− 1 1:21e− 1
Fromm’s 0.0 4:68e− 2 1:57e− 1 2:61e− 1 3:04e− 1 2:81e− 1 1:82e− 1
QUICK 0.0 2:34e− 2 7:83e− 2 1:30e− 1 1:52e− 1 1:40e− 1 9:09e− 2
LSR(0) 0.0 5:18e− 2 1:74e− 1 2:95e− 1 3:53e− 1 3:41e− 1 2:09e− 1
LSR(−1) 0.0 1:04e− 1 3:49e− 1 5:89e− 1 7:05e− 1 6:82e− 1 4:18e− 1

The series of �gures in this section provides information concerning the magnitude of the
arti�cial di�usivity of each method. A quantitative measure of the dimensionless integrated
(over orientation and wave number) arti�cial di�usivity is presented in Tables IX and X for the
�=1 and 1

2 aspect ratio cases, respectively. All but the FOU semi-discretizations demonstrate
generally increasing arti�cial di�usivity, in terms of the �art metric, with increasing wave
number. As with the one-dimensional results, FOU exhibits dimensionless arti�cial di�usivity
which decreases with the wave number. In terms of the �art metric, the FOU and LSR(−1)
methods show the greatest amount of damping while the QUICK scheme produces the least
arti�cial di�usivity as measured in this metric.
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4. SUMMARY AND CONCLUSIONS

4.1. Summary

In this two-part paper, we have presented a multi-methods comparison of a variety of popular
discretization schemes in the context of linear advection–di�usion. As the starting point for
this multi-methods analysis and comparison, we chose to apply Fourier analysis because it
provides a general methodology that is capable of analysing multiple methods in a single
mathematical framework while providing a great deal of information and insight into each
method. In this work, Fourier analysis has been used to investigate the following aspects of
each numerical method: (a) numerical dispersion, i.e. phase and group velocity errors, (b) the
spectral behaviour of the discrete di�usivity, (c) the limiting behaviour of short wavelength
information for both wave propagation and di�usion, (d) the identi�cation and characteriza-
tion of arti�cial di�usivity introduced via upwinding, (e) grid bias errors in phase, discrete
di�usivity and arti�cial di�usivity, and (f) asymptotic convergence properties and resolution
requirements.
The results of this analysis show that there are a number of competing methods that are

all of second-order accuracy or better and that should perform adequately in the hands of an
experienced analyst. While there is no single best method identi�ed, there are at least two
methods that are clearly the worst. The �rst-order upwind method is excessively di�usive,
and the second-order upwind method is extremely dispersive—as are the FEM-SUPG and
CVFEM-SUCV methods at low Peclet number.
The Galerkin �nite element method and its streamline-upwind derivatives exhibit super-

convergent behaviour in terms of dispersive behaviour, i.e. phase and group accuracy. The
only other method considered that exhibited this behaviour is the third-order upwind scheme.
Analysis of several CVFEM methods and their streamline-upwind derivatives revealed that
their behaviour is strictly second-order in all of our metrics. While it appears that these
methods yield good phase and group accuracy when the accuracy requirements are relaxed,
the resolution requirements for an acceptable 1% error in phase and group is more than twice
that of the �nite element method in a one-dimensional sense (greater than a factor of eight
in three dimensions).
The deleterious e�ects of ad hoc mass-lumping was demonstrated (again) for the FEM and

CVFEM formulations. In comparison, the FDM and FVM formulations, by default, incorpo-
rate a diagonal mass matrix, i.e. they come equipped with a built-in lumped mass approx-
imation in which the nodal time derivatives are decoupled. In terms of advection-di�usion,
the FDM and FVM schemes represent the time-dependent terms by an equivalent lumped-
capacitance. In contrast, the consistent mass matrix inherent in the FEM/CVFEM formula-
tions represent these time-dependent terms by a distributed capacitance that more accurately
re�ects the physical situation in the continuum. As a consequence, the lumped-capacitance
representation inherent in the FDM and FVM schemes yield schemes that generally under-
perform in terms of phase and group speed relative to their consistent-mass FEM/CVFEM
counterparts.
Several of the �nite di�erence and �nite volume methods show reasonable dispersion char-

acteristics, however it should be noted that, except for the �rst-order upwind scheme, these
methods all involve higher-order advection operators, i.e. they involve more than just the
neighbouring grid points. These methods are more di�cult to deal with on unstructured meshes
and many current implementations use extrapolation of variables outside the control volume
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(e.g. Jessee and Fiveland [3]). The e�ect of this extrapolation on the resulting accuracy may
be a concern and could be assessed using the methods outlined in this paper.
In terms of numerical performance for pure di�usion problems, the consistent mass CVFEM

scheme introduces minimal error and anisotropy in two dimensions. In contrast, the stabilized
schemes, FEM-SUPG and CVFEM-SUCV, may be optimized for phase and group accuracy,
but when tuned for phase accuracy, they do not perform well in terms of the discrete di�u-
sivity, which exhibits signi�cant anisotropic behaviour. This reinforces the notion that there
is no single best method that spans all problem classes.

4.2. Conclusions

The results of this �rst step in a multi-methods comparison lead us to conclude that:

• There is no single best method, but there are a number of competing methods that are of
second-order accuracy or better and that should perform adequately in the hands of an
experienced analyst. However, the grid resolution requirements to attain a certain level
of error can be vastly di�erent. The ultimate decision on a ‘best’ method for a given
problem can be easily discerned by using the computational e�ciency, i.e. CPU time, to
achieve a given level of accuracy as a metric (see for example, Reference [4]).

• A single numerical method that can optimally solve all problem classes with equivalent
accuracy and robustness does not exist in the set of methods considered, but the selection
of an optimal numerical method must still be made based on the problem to be solved.
The results presented here will hopefully provide some guidance in the selection process.

• The spatial coupling of time-derivatives yields super-convergent phase and group accu-
racy for the �nite element methods, and as a general rule improves the phase and group
accuracy of the CVFEM methods, albeit without the super-convergent behaviour.

• The two-dimensional dispersive properties of many of the methods may be characterized
by a simple generalization relative to the corresponding one-dimensional behaviour.

• At the hyperbolic limit, the accurate propagation of a signal depends on providing ade-
quate resolution for all wavelengths present in the signals. Dispersive errors will occur
for all of the methods considered here.

• Although not often discussed, accurate modeling of di�usion also requires providing
adequate resolution for all wavelengths present in the signals. Many methods exhibit
reduced apparent di�usivities for short-wavelength signals, i.e. near the grid Nyquist
limit.

• The arti�cial viscosity, in general, damps the under-resolved parts of a signal—the spe-
ci�c spectral characteristics have been shown to be a function of the method. All of
the higher-order methods tend to introduce minimal arti�cial di�usivity through the mid-
range of the discrete spectrum with a peak occurring just before the Nyquist limit for
the grid. This behaviour may be optimized to deliver speci�c band-pass properties that
match the dispersive properties of the method. However, to our knowledge, this type of
matching has not been performed.

4.3. Future directions

The work presented here constitutes a �rst step in a multi-methods comparison intended to
identify the relative strengths and weaknesses of multiple numerical methods in the context of
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advective–di�usive processes. The focus for this work has been on characterizing the numerical
artifacts associated with spatial discretization in a spectral sense. There are, of course, other
numerical methods, and analysis techniques that can be applied to a multi-methods comparison.
From our perspective the logical next steps in this work should proceed as follows.

1. Extend the analysis techniques presented here to treat non-linear advection methods. This
step should consider the very important total-variation diminishing (TVD) properties of
non-linear methods and the concomitant introduction of an arti�cial di�usivity that varies
in space and time. Initial e�orts in this direction suggest that it is possible to bound the
phase and group speed, discrete di�usivity, and arti�cial di�usivity in terms of �ux
limiters and their operating range.

2. Extend the analysis presented here to consider the fully-discrete situation for a range of
time-integration methods. Gresho and Sani [2] (see Section 2.7.6) present a prototypical
study of fully discrete methods, albeit a subset of the methods considered here. In addition
to characterizing the fully discrete dispersive errors, consideration of the algorithmic
damping associated with time-integration schemes should be considered in conjunction
with the arti�cial di�usivity associated with the spatial discretization. As with this work,
a Fourier analysis would provide the means for placing all methods on a relatively equal
footing.

3. A carefully designed suite of computational experiments should be assembled and used
to assess speci�c methods selected based on the outcome of steps 1 and 2. This phase of
the e�ort would focus on the development of an archival database of results that would
be accessible via the world-wide web. This idea is not new, and a good prototype for
this may be found in the work reported by Baptista et al. [5]. It is anticipated that this
phase of the e�ort could draw on results provided by a large number of researchers with
appropriate quality-control measures for submitted results.
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